Ion fluxes and electro-osmotic fluid flow in electrolytes around a metallic nanowire tip under large applied ac voltage.

نویسندگان

  • M Poetschke
  • M Bobeth
  • G Cuniberti
چکیده

Motivated by the analysis of electrochemical growth of metallic nanowires from solution, we studied ion fluxes near nanoelectrodes in a binary symmetric electrolyte on the basis of the modified Poisson-Nernst-Planck equations in the strongly nonlinear region at large applied ac voltage. For an approximate calculation of the electric field near the nanowire tip, concentric spherical blocking electrodes were considered with radius of the inner electrode being of typically a few ten nanometers. The spatiotemporal evolution of the ion concentrations within this spherical model was calculated numerically by using the finite element method. The potential drop at the electric double layer, the electric field enhancement at the electrode surface, and the field screening in the bulk solution were determined for different bulk concentrations, ac voltages, and frequencies. The appearance of ac electro-osmotic fluid flow at the tip of a growing metallic nanowire is discussed, based on an estimation of the body force in the liquid near the nanowire tip, which was modeled by a cylinder with hemispherical cap. Electric field components tangential to the electrode surface exist near the contact between cylinder and hemisphere. Our analysis suggests that ac electro-osmotic flow causes an additional convective transport of metal complexes to the tip of the growing metal nanowire and thus affects the nanowire growth velocity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electro-orientation of a metal nanowire counterbalanced by thermal torques.

The rotational diffusion of electrically polarized metal nanowires suspended in an electrolyte is studied. The alignment of a Brownian nanowire in an ac field with a given direction is not complete due to thermal (fluctuating) torques. The orientation distribution allows us to examine the electrokinetic torques acting on the nanowire for smaller voltages than in previous deterministic experimen...

متن کامل

Electro-orientation and electrorotation of metal nanowires.

The physical mechanisms responsible for the electrical orientation and electrical rotation of metal nanowires suspended in an electrolyte as a function of frequency of the applied ac electric field are examined theoretically and experimentally. The alignment of a nanowire in an ac field with a fixed direction is called electro-orientation. The induced constant rotation of a nanowire in a rotati...

متن کامل

Pumping of liquids with ac voltages applied to asymmetric pairs of microelectrodes.

The net flow of electrolyte induced by an ac electric potential applied to an array of asymmetric pairs of microelectrodes has recently been reported. The interaction between the oscillating electric field and the oscillating induced charge at the diffuse double layer on the electrodes results in a steady electro-osmotic velocity distribution on top of the electrodes. This slip velocity distrib...

متن کامل

The effect of step height on the performance of three-dimensional ac electro-osmotic microfluidic pumps.

Recent numerical and experimental studies have investigated the increase in efficiency of microfluidic ac electro-osmotic pumps by introducing nonplanar geometries with raised steps on the electrodes. In this study, we analyze the effect of the step height on ac electro-osmotic pump performance. AC electro-osmotic pumps with three-dimensional electroplated steps are fabricated on glass substrat...

متن کامل

Theoretical prediction of fast 3D AC electro-osmotic pumps.

AC electro-osmotic (ACEO) pumps in microfluidics currently involve planar electrode arrays, but recent work on the underlying phenomenon of induced-charge electro-osmosis (ICEO) suggests that three-dimensional (3D) geometries may be exploited to achieve faster flows. In this paper, we present some new design principles for periodic 3D ACEO pumps, such as the "fluid conveyor belt" of ICEO flow o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 29 36  شماره 

صفحات  -

تاریخ انتشار 2013